Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JACC Basic Transl Sci ; 8(7): 820-839, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37547075

RESUMO

B-cell lymphoma 2-associated athanogene-3 (Bag3) is expressed in all animal species, with Bag3 levels being most prominent in the heart, the skeletal muscle, the central nervous system, and in many cancers. Preclinical studies of Bag3 biology have focused on animals that have developed compromised cardiac function; however, the present studies were performed to identify the pathways perturbed in the heart even before the occurrence of clinical signs of dilatation and failure of the heart. These studies show that hearts carrying variants that knockout one allele of BAG3 have significant alterations in multiple cellular pathways including apoptosis, autophagy, mitochondrial homeostasis, and the inflammasome.

2.
Cells ; 12(6)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36980278

RESUMO

BAG3 is a 575 amino acid protein that is found throughout the animal kingdom and homologs have been identified in plants. The protein is expressed ubiquitously but is most prominent in cardiac muscle, skeletal muscle, the brain and in many cancers. We describe BAG3 as a quintessential multi-functional protein. It supports autophagy of both misfolded proteins and damaged organelles, inhibits apoptosis, maintains the homeostasis of the mitochondria, and facilitates excitation contraction coupling through the L-type calcium channel and the beta-adrenergic receptor. High levels of BAG3 are associated with insensitivity to chemotherapy in malignant cells whereas both loss of function and gain of function variants are associated with cardiomyopathy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Animais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Citoplasma/metabolismo , Miocárdio/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 318(5): H1162-H1175, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32216616

RESUMO

Nitric oxide (NO) and S-nitrosothiol (SNO) are considered cardio- and vasoprotective substances. We now understand that one mechanism in which NO/SNOs provide cardiovascular protection is through their direct inhibition of cardiac G protein-coupled receptor (GPCR) kinase 2 (GRK2) activity via S-nitrosylation of GRK2 at cysteine 340 (C340). This maintains GPCR homeostasis, including ß-adrenergic receptors, through curbing receptor GRK2-mediated desensitization. Previously, we have developed a knockin mouse (GRK2-C340S) where endogenous GRK2 is resistant to dynamic S-nitrosylation, which led to increased GRK2 desensitizing activity. This unchecked regulation of cardiac GRK2 activity resulted in significantly more myocardial damage after ischemic injury that was resistant to NO-mediated cardioprotection. Although young adult GRK2-C340S mice show no overt phenotype, we now report that as these mice age, they develop significant cardiovascular dysfunction due to the loss of SNO-mediated GRK2 regulation. This pathological phenotype is apparent as early as 12 mo of age and includes reduced cardiac function, increased cardiac perivascular fibrosis, and maladaptive cardiac hypertrophy, which are common maladies found in patients with cardiovascular disease (CVD). There are also vascular reactivity and aortic abnormalities present in these mice. Therefore, our data demonstrate that a chronic and global increase in GRK2 activity is sufficient to cause cardiovascular remodeling and dysfunction, likely due to GRK2's desensitizing effects in several tissues. Because GRK2 levels have been reported to be elevated in elderly CVD patients, GRK2-C340 mice can give insight into the aged-molecular landscape leading to CVD.NEW & NOTEWORTHY Research on G protein-coupled receptor kinase 2 (GRK2) in the setting of cardiovascular aging is largely unknown despite its strong established functions in cardiovascular physiology and pathophysiology. This study uses a mouse model of chronic GRK2 overactivity to further investigate the consequences of long-term GRK2 on cardiac function and structure. We report for the first time that chronic GRK2 overactivity was able to cause cardiac dysfunction and remodeling independent of surgical intervention, highlighting the importance of GRK activity in aged-related heart disease.


Assuntos
Envelhecimento/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Cardiopatias/etiologia , Coração/fisiologia , Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Envelhecimento/metabolismo , Animais , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Coração/crescimento & desenvolvimento , Coração/fisiopatologia , Cardiopatias/metabolismo , Homeostase , Masculino , Camundongos , Mutação
4.
Mol Metab ; 9: 98-113, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396368

RESUMO

OBJECTIVE: Mice with global null mutation of Ceacam1 (Cc1-/-), display impairment of insulin clearance that causes hyperinsulinemia followed by insulin resistance, elevated hepatic de novo lipogenesis, and visceral obesity. In addition, they manifest abnormal vascular permeability and elevated blood pressure. Liver-specific rescuing of Ceacam1 reversed all of the metabolic abnormalities in Cc1-/-liver+ mice. The current study examined whether Cc1-/- male mice develop endothelial and cardiac dysfunction and whether this relates to the metabolic abnormalities caused by defective insulin extraction. METHODS AND RESULTS: Myography studies showed reduction of agonist-stimulated nitric oxide production in resistance arterioles in Cc1-/-, but not Cc1-/-liver+ mice. Liver-based rescuing of CEACAM1 also attenuated the abnormal endothelial adhesiveness to circulating leukocytes in parallel to reducing plasma endothelin-1 and recovering plasma nitric oxide levels. Echocardiography studies revealed increased septal wall thickness, cardiac hypertrophy and reduced cardiac performance in Cc1-/-, but not Cc1-/-xliver+ mice. Insulin signaling experiments indicated compromised IRS1/Akt/eNOS pathway leading to lower nitric oxide level, and activated Shc/MAPK pathway leading to more endothelin-1 production in the aortae and hearts of Cc1-/-, but not Cc1-/-xliver+ mice. The increase in the ratio of endothelin-1 receptor A/B indicated an imbalance in the vasomotor activity of Cc1-/- mice, which was normalized in Cc1-/-xliver+ mice. CONCLUSIONS: The data underscore a critical role for impaired CEACAM1-dependent hepatic insulin clearance pathways and resulting hyperinsulinemia and lipid accumulation in aortae and heart in regulating the cardiovascular function.


Assuntos
Antígeno Carcinoembrionário/genética , Cardiomiopatias/genética , Endotélio Vascular/metabolismo , Hiperinsulinismo/genética , Fígado/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Antígeno Carcinoembrionário/metabolismo , Cardiomiopatias/metabolismo , Células Cultivadas , Endotelinas/metabolismo , Deleção de Genes , Hiperinsulinismo/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
J Clin Invest ; 127(6): 2407-2417, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28481222

RESUMO

Genetic variants at the solute carrier family 39 member 8 (SLC39A8) gene locus are associated with the regulation of whole-blood manganese (Mn) and multiple physiological traits. SLC39A8 encodes ZIP8, a divalent metal ion transporter best known for zinc transport. Here, we hypothesized that ZIP8 regulates Mn homeostasis and Mn-dependent enzymes to influence metabolism. We generated Slc39a8-inducible global-knockout (ZIP8-iKO) and liver-specific-knockout (ZIP8-LSKO) mice and observed markedly decreased Mn levels in multiple organs and whole blood of both mouse models. By contrast, liver-specific overexpression of human ZIP8 (adeno-associated virus-ZIP8 [AAV-ZIP8]) resulted in increased tissue and whole blood Mn levels. ZIP8 expression was localized to the hepatocyte canalicular membrane, and bile Mn levels were increased in ZIP8-LSKO and decreased in AAV-ZIP8 mice. ZIP8-LSKO mice also displayed decreased liver and kidney activity of the Mn-dependent enzyme arginase. Both ZIP8-iKO and ZIP8-LSKO mice had defective protein N-glycosylation, and humans homozygous for the minor allele at the lead SLC39A8 variant showed hypogalactosylation, consistent with decreased activity of another Mn-dependent enzyme, ß-1,4-galactosyltransferase. In summary, hepatic ZIP8 reclaims Mn from bile and regulates whole-body Mn homeostasis, thereby modulating the activity of Mn-dependent enzymes. This work provides a mechanistic basis for the association of SLC39A8 with whole-blood Mn, potentially linking SLC39A8 variants with other physiological traits.


Assuntos
Proteínas de Transporte de Cátions/fisiologia , Fígado/enzimologia , Manganês/metabolismo , N-Acetil-Lactosamina Sintase/metabolismo , Animais , Arginase/metabolismo , Bile/metabolismo , Feminino , Glicosilação , Células HEK293 , Homeostase , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Processamento de Proteína Pós-Traducional
6.
Circ Res ; 112(3): 432-40, 2013 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-23250985

RESUMO

RATIONALE: Human genetics have implicated the 5-lipoxygenase enzyme in the pathogenesis of cardiovascular disease, and an inhibitor of the 5-lipoxygenase activating protein (FLAP) is in clinical development for asthma. OBJECTIVE: Here we determined whether FLAP deletion modifies the response to vascular injury. METHODS AND RESULTS: Vascular remodeling was characterized 4 weeks after femoral arterial injury in FLAP knockout mice and wild-type controls. Both neointimal hyperplasia and the intima/media ratio of the injured artery were significantly reduced in the FLAP knockouts, whereas endothelial integrity was preserved. Lesional myeloid cells were depleted and vascular smooth muscle cell (VSMC) proliferation, as reflected by bromodeoxyuridine incorporation, was markedly attenuated by FLAP deletion. Inflammatory cytokine release from FLAP knockout macrophages was depressed, and their restricted ability to induce VSMC migration ex vivo was rescued with leukotriene B(4). FLAP deletion restrained injury and attenuated upregulation of the extracellular matrix protein, tenascin C, which affords a scaffold for VSMC migration. Correspondingly, the phenotypic modulation of VSMC to a more synthetic phenotype, reflected by morphological change, loss of α-smooth muscle cell actin, and upregulation of vascular cell adhesion molecule-1 was also suppressed in FLAP knockout mice. Transplantation of FLAP-replete myeloid cells rescued the proliferative response to vascular injury. CONCLUSIONS: Expression of lesional FLAP in myeloid cells promotes leukotriene B(4)-dependent VSMC phenotypic modulation, intimal migration, and proliferation.


Assuntos
Proteínas Ativadoras de 5-Lipoxigenase/metabolismo , Movimento Celular , Proliferação de Células , Músculo Liso Vascular/enzimologia , Células Mieloides/enzimologia , Miócitos de Músculo Liso/enzimologia , Lesões do Sistema Vascular/prevenção & controle , Proteínas Ativadoras de 5-Lipoxigenase/deficiência , Proteínas Ativadoras de 5-Lipoxigenase/genética , Animais , Transplante de Medula Óssea , Células Cultivadas , Cisteína/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Artéria Femoral/enzimologia , Artéria Femoral/lesões , Artéria Femoral/patologia , Genótipo , Hiperplasia , Mediadores da Inflamação/metabolismo , Leucotrieno B4/metabolismo , Leucotrienos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/lesões , Músculo Liso Vascular/patologia , Células Mieloides/imunologia , Células Mieloides/transplante , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/patologia , Neointima , Fenótipo , Tenascina/metabolismo , Fatores de Tempo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Lesões do Sistema Vascular/enzimologia , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/imunologia , Lesões do Sistema Vascular/patologia
7.
J Biol Chem ; 286(52): 44788-98, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22084246

RESUMO

The endoplasmic reticulum Ca(2+)-sensing STIM proteins mediate Ca(2+) entry signals by coupling to activate plasma membrane Orai channels. We reveal that STIM-Orai coupling is rapidly blocked by hypoxia and the ensuing decrease in cytosolic pH. In smooth muscle cells or HEK293 cells coexpressing STIM1 and Orai1, acute hypoxic conditions rapidly blocked store-operated Ca(2+) entry and the Orai1-mediated Ca(2+) release-activated Ca(2+) current (I(CRAC)). Hypoxia-induced blockade of Ca(2+) entry and I(CRAC) was reversed by NH(4)(+)-induced cytosolic alkalinization. Hypoxia and acidification both blocked I(CRAC) induced by the short STIM1 Orai-activating region. Although hypoxia induced STIM1 translocation into junctions, it did not dissociate the STIM1-Orai1 complex. However, both hypoxia and cytosolic acidosis rapidly decreased Förster resonance energy transfer (FRET) between STIM1-YFP and Orai1-CFP. Thus, although hypoxia promotes STIM1 junctional accumulation, the ensuing acidification functionally uncouples the STIM1-Orai1 complex providing an important mechanism protecting cells from Ca(2+) overload under hypoxic stress conditions.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Junções Intercelulares/metabolismo , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Canais de Cálcio/genética , Hipóxia Celular/fisiologia , Células HEK293 , Humanos , Junções Intercelulares/genética , Proteínas de Membrana/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Miócitos de Músculo Liso/citologia , Proteínas de Neoplasias/genética , Proteína ORAI1 , Transporte Proteico/fisiologia , Molécula 1 de Interação Estromal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA